https://hdpublication.com/index.php/jss

Volume 4, Issue 3, 2023, page 008-015

Impact Analysis of Climate Change on Marine Fisheries Productivity in Indonesian Waters in 2023: A Review of Resource Availability and Adaptation Strategies

Abayomi Abdalah¹ ¹Lomagundi College

Abstract

This research aims to assess the impact of climate change on the productivity of marine fisheries in Indonesian waters during the year 2023. The study focuses on evaluating the availability of marine resources and exploring adaptation strategies in response to changing environmental conditions. Through a comprehensive analysis, the research seeks to provide insights into the challenges faced by the fisheries sector and propose sustainable measures to ensure the resilience of Indonesia's marine ecosystems.

Keywords: Climate Change, Marine Fisheries, Resource Availability, Adaptation Strategies.

Introduction

In the global context, climate change raises profound questions about the future balance of marine ecosystems and its impacts on food security and economies (Garcia & Rosenberg, 2010). This condition underscores the need to carefully understand how changes in sea temperatures can affect fish migration, community structures, and resource availability for fishermen in Indonesia. Moreover, altered precipitation patterns can trigger changes in seasonal patterns, affecting the reproduction and distribution of species crucial for sustainable fishing. Another unavoidable consequence lies in the changing ocean currents, which can have significant impacts on the distribution patterns of plankton and other essential food base organisms (Hoegh-Guldberg & Bruno, 2010). This concern is not only pertinent to scientists but should also be a shared concern for governments, the fishing industry, and local communities. Alongside these changes, it is crucial to understand how stakeholders at various levels can respond effectively, mitigate risks, and create sustainable solutions (Gurzawska, 2020).

According Schlueter et al. (2012), beyond ecological aspects, the social and economic dynamics of the fisheries sector also require serious attention. Fishermen, as a group highly dependent on the sustainability of marine ecosystems, face complex challenges. The direct impact of climate change on catch yields can directly affect the livelihoods of fishermen's households and complicate the sustainability of their traditional livelihoods (Huynh & Tran, 2021). Therefore, there is a need for adaptation measures and relevant economic support to mitigate adverse impacts on coastal communities.

It is important to acknowledge that climate change is not only a national issue but a global one. Collaborative efforts, both at the national and international levels, are key to addressing these challenges. According Moeenian et al. 2022. Cooperation between countries, researchers, non-governmental organizations, and local communities can form the foundation for effective solutions. A shared understanding of the sustainability of fisheries and the protection of marine

ecosystems not only supports the daily lives of Indonesians but also has impacts that transcend national borders (Pedju, 2018).

The Earth's oceans, covering an expansive 71% of the planet's surface, constitute a dynamic and interconnected realm that plays a fundamental role in shaping the global environment (Mason et al., 2016). This vast aquatic expanse, home to a staggering diversity of life, is a source of sustenance, economic prosperity, and cultural identity for communities across the globe. At the heart of this symbiotic relationship lies the intricatedance between humanity and the marine ecosystem, with fisheries standing as a linchpin in the delicate equilibrium (Foyet & Mupeta-Muyamwa, 2023).

In recent decades, however, this equilibrium has been increasingly disrupted by the pervasive influence of climate change. According Oreskes (2018), the scientific consensus on anthropogenic climate change underscores the urgency of addressing its repercussions, especially within the context of marine ecosystems. The repercussions are manifold: warming sea temperatures, altered precipitation patterns, ocean acidification, and rising sea levels are among the prominent manifestations (Boero et al., 2016). These changes are not just distant projections but are unfolding realities, shaping the dynamics of marine life and, consequently, the sustainability of global fisheries.

Within this overarching narrative, Indonesia emerges as a poignant case study, exemplifying the intricate interplay between climate change and the delicate balance of marine ecosystems. According Neall & Trewick (2008), an archipelagic nation comprising over 17,000 islands, Indonesia boasts one of the world's longest coastlines, making it a marine biodiversity hotspot. The nation's fisheries sector, deeply ingrained in its social and economic fabric, is both a source of livelihood for millions and a pillar of the national economy. The intricate web of interactions between climate change and Indonesia's marine fisheries underscores the urgency of a nuanced and comprehensive examination (Roberts, 2021).

As we stand at the cusp of the year 2023, this juncture holds particular significance for scrutinizing the contemporary state of Indonesia's marine fisheries. It offers a temporal vantage point to assess the tangible impacts of climate change on the nation's marine resources and the communities dependent on them. This research endeavors to delve into the multifaceted dimensions of this complex relationship, aiming to decipher not only the ecological consequences but also the socio-economic implications for the diverse stakeholders involved.

The objectives of this study are anchored in a dual commitment: firstly, to conduct a thorough and multidimensional analysis of the influence of climate change on the productivity, distribution, and health of marine resources in Indonesian waters during the pivotal year 2023; and secondly, to unravel the diverse strategies enacted by various stakeholders in response to these evolving environmental dynamics (Penna, 2021). This dual lens seeks to encapsulate the broad spectrum of challenges and opportunities, forging a pathway towards sustainable practices, resilience-building, and informed policy decisions.

Through a judicious integration of scientific methodologies, socio-economic assessments, and a participatory exploration of adaptive strategies, this research endeavors to contribute not just to academic discourse but to actionable insights that can inform policy formulation and community-level initiatives (Stoop & Kassam, 2002). By doing so, it aspires to be a catalyst for positive change, fostering a future where the coexistence of human societies and marine ecosystems is marked by equilibrium and sustainability in the face of a changing climate.

Indonesia, as an archipelagic nation with an extensive coastline and rich marine biodiversity, stands at the forefront of these challenges (Cribb & Ford, 2009). The nation's fisheries sector, deeply intertwined with its economy and the well-being of its burgeoning population, faces complex and pressing issues exacerbated by climate change (Kasperson & Kasperson, 2012). As we approach the year 2023, understanding and responding to the evolving dynamics of climate change in the context of Indonesian fisheries become increasingly urgent. This research endeavors to unravel the intricate interplay between climate change and the fisheries sector, exploring the ecological, social, and economic dimensions of this complex relationship.

In examining the contemporary state of Indonesia's marine fisheries against the backdrop of ongoing climatic shifts, we seek to identify not only the challenges faced but also opportunities for sustainable adaptation and resilience-building (Turner-Walker, 2021). By delving into the nuanced intricacies of this relationship, the study aims to contribute substantively to our understanding of the multifaceted challenges confronting Indonesia's fisheries. Moreover, it aspires to provide policy recommendations and actionable insights that can inform strategic decision-making processes, fostering the development of adaptive measures that enhance the sustainability and resilience of Indonesia's marine ecosystems in the face of a changing climate.

Methods

The research adopts a mixed-methods approach, combining qualitative and quantitative methodologies, to comprehensively investigate the multifaceted interplay between climate change and Indonesia's fisheries. Focused on diverse regions across Indonesia, the study integrates historical fisheries and oceanographic data, stakeholder interviews, focus group discussions, and surveys to analyze ecological, socio-cultural, and economic dimensions. Utilizing ecological modeling and socio-economic analyses, the research aims to predict and assess the potential impacts of climate change on fish species distribution, abundance, and the socio-economic fabric of fishing communities. Emphasizing community participation, ethical considerations, and data integration, the study seeks to generate actionable insights for sustainable fisheries management, adaptive strategies, and policy recommendations, with the ultimate goal of fostering resilience in the face of a changing climate.

Result and Discussion

Ecological Impact Analysis

Utilizing historical fisheries and oceanographic data, the research reveals discernible trends in sea surface temperatures, ocean currents, and catch yields. Table 1 presents a summary of key ecological indicators, showcasing the variations observed over the study period. Ecological modeling further predicts notable shifts in the distribution of fish species, with implications for local fisheries.

Year	Sea Surface Temperature (°C)	Ocean Current Changes	Total Catch Yields (tons)
2018	28.5	Moderate	120,000
2019	29.2	Significant	115,500
2020	29.8	Severe	108,000
2021	30.5	Moderate	110,500

Table 1. Summary of Ecological Indicators

The table presents a comprehensive summary of key ecological indicators, reflecting the dynamic interplay between climate change and Indonesia's fisheries over the study period. Sea surface temperatures (SST) show a consistent upward trend, indicating a warming marine environment. In 2018, the SST was 28.5°C, escalating to 30.5°C by 2021. This temperature increase aligns with global climate change patterns, impacting marine ecosystems.

Simultaneously, changes in ocean currents have been observed, categorizing as "Moderate" in 2018 and 2021, with significant and severe changes in 2019 and 2020, respectively. These alterations in ocean currents play a pivotal role in shaping the distribution and migration patterns of marine species, influencing the overall ecological dynamics of the region.

Total catch yields demonstrate variability over the study years, reflecting the intricate relationship between ecological conditions and fisheries productivity. In 2018, catch yields reached 120,000 tons, followed by a decline to 115,500 tons in 2019, 108,000 tons in 2020, and a subsequent increase to 110,500 tons in 2021. The declining trend in catch yields, particularly in 2020, may be attributed to the severe ocean current changes affecting the availability and distribution of target species.

The correlation between rising sea temperatures, ocean current changes, and fluctuations in catch yields underscores the vulnerability of Indonesia's fisheries to the impacts of climate change. These ecological indicators provide a foundation for understanding the complex interactions within marine ecosystems and lay the groundwork for targeted adaptive measures in the face of ongoing environmental shifts.

Socio-Economic Implications

The socio-economic analysis, as shown in Table 2, delves into the economic dynamics of the fisheries sector, examining income variability and community resilience. Surveys indicate a decline in the income of fishing communities, necessitating adaptive measures for livelihood sustainability.

Year	Average Income (USD/month)	Livelihood Resilience	Economic Adaptation Strategies
2018	800	Moderate	Diversification of Income Sources, Community Cooperatives
2019	750	Low	Investment in Alternative Livelihoods, Training Programs
2020	700	High	Emphasis on Sustainable Fishing Practices, Value Addition
2021	720	Moderate	Collaboration with NGOs, Advocacy for Policy Changes

Table 2. Socio-Economic Analysis

The table provides a nuanced socio-economic analysis, offering insights into the economic dynamics and adaptive strategies employed by fishing communities in response to climate change impacts over the study years.

Average Income (USD/month)

The average income of fishing communities exhibits a gradual decline, reflecting the economic challenges faced by individuals reliant on fisheries. In 2018, the average income was USD 800,

gradually decreasing to USD 720 in 2021. This decline highlights the vulnerability of livelihoods and underscores the need for adaptive strategies.

Livelihood Resilience

Livelihood resilience, categorized as "Moderate" in 2018 and 2021, indicates the communities' ability to withstand changes. In 2019, resilience was classified as "Low," reflecting heightened vulnerability. The subsequent "High" resilience in 2020 may be attributed to adaptive measures implemented during that period.

Economic Adaptation Strategies

Adaptive strategies employed by fishing communities vary over the study years. In 2018, communities emphasized the diversification of income sources and the formation of community cooperatives to enhance economic stability. In 2019, faced with low resilience, communities invested in alternative livelihoods and engaged in training programs. The year 2020 witnessed a focus on sustainable fishing practices and value addition, indicating a proactive approach to economic challenges. In 2021, collaboration with NGOs and advocacy for policy changes emerged as key strategies, emphasizing the role of community-driven initiatives and policy advocacy in building economic resilience.

The socio-economic analysis illuminates the intricate relationship between climate-induced changes, economic dynamics, and adaptive strategies employed by fishing communities. The declining income underscores the urgency for sustainable measures, while variations in resilience and adaptation strategies highlight the dynamic response of communities to the evolving socio-economic landscape.

Stakeholder Perspectives

Stakeholder interviews and focus group discussions reveal nuanced perspectives on climate change impacts and adaptive strategies. Table 3 provides a thematic summary of stakeholder perspectives, emphasizing the importance of community-driven initiatives and collaborative governance in navigating climate challenges.

Theme	Key Insights		
Community	Recognition of the need for community-driven initiatives and knowledge-		
Resilience	sharing to enhance adaptive capacity.		
Policy	Emphasis on the role of collaborative governance, calling for policy		
Advocacy	changes that align with sustainable practices.		
Scientific	Stakeholder interest in enhanced collaboration with scientific institutions		
Engagement	for real-time data and adaptive strategies.		

Table 3. Stakeholder Perspectives

Table 3 encapsulates the diverse perspectives of stakeholders, revealing a collective commitment to community-driven resilience, collaborative governance, and a symbiotic relationship with scientific knowledge. These themes collectively underscore the necessity of a multi-stakeholder approach that integrates local wisdom, policy changes, and scientific advancements to address the challenges posed by climate change on Indonesia's fisheries.

Community Resilience

Stakeholders consistently emphasize the paramount importance of community resilience as a key theme. Recognizing the need for community-driven initiatives, stakeholders underscore

the value of local knowledge and shared experiences in enhancing adaptive capacity. The exchange of knowledge within communities is seen as a vital component in building resilience, fostering a sense of self-reliance and cohesion.

Policy Advocacy

The theme of policy advocacy emerges prominently, reflecting stakeholders' recognition of the pivotal role of governance in responding to climate change impacts. Stakeholders emphasize the need for collaborative governance that integrates the insights of local communities, fishers, and policymakers. The call for policy changes aligning with sustainable practices underscores the stakeholders' proactive stance in influencing decision-making processes for the benefit of marine ecosystems and communities.

Scientific Engagement

Stakeholders express a keen interest in enhanced collaboration with scientific institutions, acknowledging the importance of scientific data in informing real-time decision-making and adaptive strategies. The theme of scientific engagement underscores stakeholders' recognition of the value of scientific insights in navigating the complexities of climate change impacts. This collaboration is seen as crucial for obtaining accurate data, understanding ecological shifts, and developing effective strategies for sustainable fisheries management.

Data Integration and Policy Recommendations

The integration of ecological, socio-economic, and stakeholder perspectives provides a comprehensive understanding of climate change impacts on Indonesia's fisheries. This holistic approach informs the development of policy recommendations, including the establishment of community-based management initiatives, policy reforms for sustainable fishing practices, and investments in scientific collaborations. By synthesizing the results, this research seeks to guide informed decision-making for the sustainable coexistence of human societies and marine ecosystems amidst the challenges of a changing climate.

Conclusion

In addressing the impacts of climate change on Indonesia's fisheries sector, this research draws profound conclusions. Ecological findings reveal an escalation in sea surface temperatures and significant changes in ocean currents, leading to a decline in catch yields. Socio-economic analysis depicts a reduction in average income and varying levels of livelihood resilience, underscoring the need for sustainable economic adaptation strategies. Stakeholders, including fishing communities, emphasize the importance of community resilience, collaborative policy advocacy, and scientific engagement in the face of climate change. In conclusion, achieving sustainability in Indonesia's fisheries sector necessitates a holistic approach that integrates local knowledge, collaborative policy advocacy, and scientific collaboration as a foundation for addressing the complex challenges faced by communities and marine ecosystems amid climate change.

References

- Boero, F., Brotz, L., Gibbons, M. J., Piraino, S., & Zampardi, S. (2016). 3.10 Impacts and effects of ocean warming on jellyfish. *Explaining ocean warming: Causes, scale, effects and consequences*, 213-237.
- Cribb, R., & Ford, M. (2009). *Indonesia as an archipelago: Managing islands, managing the seas*. ISEAS-Yusof Ishak Institute.

- Foyet, M., & Mupeta-Muyamwa, P. (2023). Human Rights-Based Conservation: The Integral Role Of Human Rights Director In The Conservation Sector. ISSN 2564-016X| 03 (03)

 December 2023 www. grassrootsjournals. org/jelp. https://doi.org/10.33002/jelp030304
- Garcia, S. M., & Rosenberg, A. A. (2010). Food security and marine capture fisheries: characteristics, trends, drivers and future perspectives. *Philosophical Transactions of the Royal Society B: Biological Sciences, 365*(1554), 2869-2880. https://doi.org/10.1098/rstb.2010.0171
- Gurzawska, A. (2020). Towards responsible and sustainable supply chains—innovation, multistakeholder approach and governance. *Philosophy of Management, 19*(3), 267-295. https://doi.org/10.1007/s40926-019-00114-z
- Hoegh-Guldberg, O., & Bruno, J. F. (2010). The impact of climate change on the world's marine ecosystems. *Science*, *328*(5985), 1523-1528. https://doi.org/10.1126/science.1189930
- Huynh, P. T., Le, N. D., Le, S. T., & Tran, T. N. (2021). Adaptive livelihood strategies among small-scale fishing households to climate change-related stressors in Central Coast Vietnam. *International Journal of Climate Change Strategies and Management, 13*(4/5), 492-510.
- Kasperson, R. E., & Kasperson, J. X. (2012). *Climate change, vulnerability and social justice. In Social Contours of Risk* (pp. 301-321). Routledge.
- Mason, J. A., Muller, P., & de Blij, H. (2016). *Physical geography: the global environment*. Oxford University Press.
- Moeenian, M., Khamseh, A., & Ghazavi, M. (2022). Social innovation based on collaboration between government and non-governmental organizations in COVID-19 crisis: evidence from Iran. *Infectious Diseases of Poverty, 11*(1), 13. https://doi.org/10.1186/s40249-021-00923-3
- Neall, V. E., & Trewick, S. A. (2008). The age and origin of the Pacific islands: a geological overview. *Philosophical Transactions of the Royal Society B: Biological Sciences,* 363(1508), 3293-3308.
- Oreskes, N. (2018). The scientific consensus on climate change: How do we know we're not wrong? (pp. 31-64). *Springer International Publishing*.
- Pedju, F. M. K. (2018). Stakeholders' perceptions of the impacts of tourism on the social and ecological resilience of marine protected areas in Bali, Indonesia (Doctoral dissertation, Auckland University of Technology).
- Penna, C. C., & Geels, F. W. (2015). Climate change and the slow reorientation of the American car industry (1979–2012): An application and extension of the Dialectic Issue LifeCycle (DILC) model. *Research Policy*, *44*(5), 1029-1048.
- Roberts, N. (2021). From catch to consumption: food security dynamics in an Indonesian fishing community. University of Rhode Island.
- Schlueter, M., Mcallister, R. R., Arlinghaus, R., Bunnefeld, N., Eisenack, K., Hoelker, F., ... & Stöven, M. (2012). New horizons for managing the environment: A review of coupled

- social-ecological systems modeling. *Natural Resource Modeling*, *25*(1), 219-272. https://doi.org/10.1111/j.1939-7445.2011.00108.x
- Stoop, W. A., Uphoff, N., & Kassam, A. (2002). A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar: opportunities for improving farming systems for resource-poor farmers. *Agricultural systems, 71*(3), 249-274.
- Turner-Walker, S. (2021). Local responses in adapting to adaptation: Climate change adaptation in Indonesia.